

BOOT CAMP LEVEL II

JOE RUSSELL – PRESIDENT – 30+ YEARS OF EXPERIENCE

• JEFF FREITAG – DIRECTOR OF SALES – 25 YEARS OF EXPERIENCE

• MATT JENSEN - DIRECTOR OF APPLIED TECHNOLOGIES - 12 YEARS

0

PRESENTED BY: MATT JENSEN, CWT

ATERTEC

- SAMPLING: PROPER LOCATIONS AND TECHNIQUES
- WORK STATION
- TESTING TECHNIQUES

GENERAL SAMPLING TECHNIQUES

- A GOOD SAMPLING CONTAINER
 - PREFERABLY WITH A HANDLE TO MINIMIZE EXPOSURE TO WATER
- WEAR GLOVES
 - SOME OF THE REAGENTS ARE NOT NICE
 - PHENOLPHTHALEIN IS A CARCINOGEN
 - IT WAS A LAXATIVE FIRST...
- ALWAYS RINSE THE SAMPLE BOTTLE 3 TIMES
 - THIS REMOVES CONTAMINANTS AND "COMPLETES THE MATRIX"
 - BOTH SAMPLING BOTTLES AND TEST VIALS AND CUVETTES

COOLING TOWER SAMPLING

COOLING TOWER SAMPLING

COOLING TOWER SAMPLING

- WHY THERE???
 - YOU WANT TO SAMPLE THE "DIRTIEST" WATER
 - TSS, TDS, ENVIRONMENTAL CONTAMINATION
 - YOU WANT TO SAMPLE THE WATER PRIOR TO THE CHEMICAL FEED
 - IF ITS FEEDING WHEN SAMPLING THE NUMBERS WILL BE SKEWED
 - BIOLOGICAL TESTING IS MOST REPRESENTATIVE AFTER THE TOWER
 - LOSS OF OXIDANT, ENVIRONMENTAL LOADING

Boiler Water • Steam Flow Schematic

Boiler Water • Steam Flow Schematic

• BOILER

- SAMPLE FROM THE SKIMMER OR THE BOTTOM BLOWDOWN
- NEVER FROM THE SIGHT GLASS!!!
 - THE SAMPLE IS DILUTED
- FEEDWATER
 - SAMPLE FROM THE BOTTOM OF THE FEEDWATER TANK
 - SAMPLING FROM FEEDWATER LINE CAN BE DANGEROUS IF BOILER IS FILLING!!!
- CONDENSATE
 - SAMPLE FROM THE CONDENSATE RETURN LINE PRIOR TO FEEDWATER TANK OR FROM A CONDENSATE RECEIVER
 - IF SAMPLING FROM A RECEIVER NOTE THAT IF THE SAMPLE HAS BEEN SITTING YOUR RESULTS WILL BE SKEWED

- SAMPLE COOLER
 - PROVIDES A SAFE, COOLED SAMPLE
 - IMPORTANT FOR TEMPERATURE SENSITIVE TESTS
 - SULFITE, CONDENSATE
 - A NECESSITY ON HIGH PRESSURE SYSTEMS

TESTING WORKSTATION

- KEEPING EVERYTHING IN ORDER WILL SPEED UP THE TESTING PROCESS
- MAINTAIN INVENTORY ON ALL REAGENTS SO THAT YOU NEVER RUN OUT
- KEEP LOG UP TO DATE AND FILE LOGS OLDER THAN 12 MONTHS
- HAVE SDS'S AVAILABLE FOR QUICK REFERENCE
- POST TEST PROCEDURES AND "WHAT TO DO" GUIDES ON THE WALL FOR EASY REFERENCE

TESTING PROCEDURES REVIEW

- METHODS FOR TESTING
- TESTING CONSIDERATIONS
- COMMON INTERFERENCES

TESTING PROCEDURES REVIEW

COLORIMETRY

- USES THE ABSORPTION OF LIGHT THROUGH A SAMPLE
- INTERFERENCES
 - TURBIDITY, COLOR IN SAMPLE PRIOR TO REAGENTS
- WIDE RANGE OF OPTIONS INCLUDING
 - MOLYBDENUM
 - CHLORINE
 - IRON
 - POLYMER

TESTING PROCEDURES REVIEW - DIGITAL

- FLUOROMETRY
 - USES THE FLUORESCENCE OF AN ACTIVATED TRACER TO DETERMINE CONCENTRATION
- INTERFERENCES
 - OIL IN WATER
 - COLOR IN SAMPLE PRIOR TO READING
- ENVIRODOSE
 - BOILER
 - COOLING
 - CLOSED LOOP

TESTING PROCEDURES - DIGITAL

CONSIDERATIONS

- ALWAYS USE CLEAN GLASS WARE
 - SMUDGES/FINGERPRINTS WILL CAUSE INTERFERENCE
- RINSE SAMPLE CELL 3 TIMES
 - REMOVES RESIDUAL FROM LAST SAMPLE TAKEN
 - COMPLETES THE MATRIX

TK3051-Z

Total Hardness Drop Count Test Procedure 1 drop = 2 or 10 ppm as CaCO₃

FOR BEST ACCURACY (1) ENSURE ACCURATE SAMPLE SIZE. (2) HOLD DROPPER BOTTLE VERTICALLY, NOT AT AN ANGLE.

1 Rinse vial 3 times with the solution to be tested. Fill vial to 25 mL with sample.

2Add 5 drops of Hardness Buffer (HA7405) and swirl to mix.

3 Add 1 scoop of Hardness Indicator (HA7475) and swirl to mix. If hardness is present the sample will turn red.

5^{Record results.}

ED2073 (Low): # of drops x 2 = ppm as CaCO_a ED2070 (High): # of drops x 10 = ppm as CaCO_a

Add Hardness Titrant drop-wise, while swirling, until the sample color changes from red to blue. Record the number of drops.

Safety Tips

- · Wear appropriate safety equipment.
- · Read MSDS before use.

Tech Tips

- · Be sure there is adequate lighting during testing
- · Rinse test vial 3 times with solution to be tested.
- · Hold reagent bottles vertically for best results.
- Make sure you have an accurate sample.
- BEV 5/08

EndPoint ID"

blue caps

TEST PROCEDURES REVIEW – DROP TEST

- REAGENT BASED TEST
 - RELIES ON CHEMICAL REACTION IN SAMPLE TO SHOW ENDPOINT
- LOW INITIAL COST
- INTERFERENCES
 - IRON, PH, OXIDIZERS, TEMPERATURE
- WIDE RANGE OF OPTIONS
 - HARDNESS, OPO4, SULFITE, ALKALINITY, ETC

TEST PROCEDURES REVIEW – DROP TEST

CONSIDERATIONS

- ALWAYS HOLD DROPPER BOTTLE STRAIGHT UP AND DOWN
 - DROPPER BOTTLES ARE CALIBRATED FOR 0.1 ML PER DROP
- MAKE SURE SAMPLE CELL USED IS RINSED 3 TIMES
- COMPLETE THE MATRIX

TEST PROCEDURES REVIEW - TITRATION

- REAGENT BASED TEST
 - RELIES ON CHEMICAL REACTION IN SAMPLE TO SHOW ENDPOINT
- LEAST EXPENSIVE OVERALL CONSIDERING REAGENT COSTS
 - LARGER UPFRONT COST THEN DROP TESTS
- INTERFERENCES
 - IRON, PH, OXIDIZERS, TEMPERATURE
- LESS OPTIONS BUT USED MAINLY FOR BASIC TESTS
 - HARDNESS, SULFITE, ALKALINITY, CHLORIDES

TEST PROCEDURES REVIEW - TITRATION

CONSIDERATIONS

- KEEP SAMPLE GLASSWARE CLEAN
- COMPLETE THE MATRIX
- MAKE SURE BURETTE IS READABLE
- IF USING THE SQUEEZE STYLE BURETTE TIP, MAKE SURE IT IS IN GOOD
 CONDITION
 - THEY WILL DRY OUT AND CRACK OVER TIME.
- CHOOSE SAMPLE SIZE FOR THE ENDPOINT THAT YOU ARE LOOKING FOR
 - 1PPM VS 100PPM

PRESENTED BY: JOE RUSSELL

ATERTE

- HOW DO WE DETERMINE PROPER CONTROL RANGES?
- WHAT ARE CAUSES OF CHEMICAL READINGS?
- REVIEW TESTING CONTROL CHART
- LOGGING RESULTS IN eSERVICE

DETERMINING PROPER CONTROL RANGES

- CONTROL RANGES
 -ASME FOR BOILERS
- BOILER PLATE
- LIMITING FACTORS
 -IRON
 - -SILICA
- EXPERIENCE!!

	Boiler Water					
Drum Pressure (psig)	Total Silica* (ppm SiO2)	Specific** Alkalinity (ppm CaCO3)	Conductance (micromhos/cm)			
0-300	150	700	7000 6000 5000			
301-450	90	600				
451-600	40	500				
601-750	30	400	4000			
751-900	20	300	3000			
901-1000	8	200	2000			
1001-1500	2	0	150			
1501-2000	1	0	100			

ASME Boiler Guidelines

DETERMINING PROPER CONTROL RANGES

LSI, RSI INDEXES FOR COOLING TOWERS
 -FOULING VS. BIOCIDE RATES

-CTI?/ASHRAE

between -0.3 to +0.3

KEY TESTING PARAMETERS & CORRECTIVE ACTIONS

• BOILERS

- AUTOMATED SYSTEM DRIVEN
 - CONDUCTIVITY & TEMPERATURE
 - METER READINGS
 - TANK LEVELS
- CHEMICAL DRIVEN
 - SULFITES
 - TOTAL POLYMER
 - OH (ALKALINITY)
 - PH

BOILER CONTROL CHART

Test	Range	Corrective Actions				
Total Polymer (PP-3060M)	.68	 If out of range, check conductivity of the boilers. High or low conductivity will cause high or low readings. If conductivity is okay, increase addition of <i>PP-3060M</i> if polymer is low, decrease if polymer is high. 				
Sulfite (WT-3462)	20-40 ppm	 Check deaerator temperature. Check conductivity in the boilers. If both are in range, increase feed of <i>WT-3462</i> if the reading is low and decrease the feed of the <i>WT-3462</i> if the reading is high. 				
Alkalinity (WT-3732)	P= 300-400 M= 350-650 OH=200-400	 Check conductivity levels. High or low conductivity will cause high or low alkalinity. Check for proper feed of the <i>WT-3732</i> sodium hydroxide. If both are correct, increase the feed of the <i>WT-3732</i> to increase alkalinity levels and decrease the pump to decrease alkalinity levels. 				
Total Hardness (Softeners, Feedwater & Condensate)	<.5 ppm	 If hardness if present, check the softeners and condensate for possible contamination. Regenerate softener on line if necessary. 				
Boiler Conductivity (Un-Neutralized)	mmho 1,800-2,300	 If conductivity is out of range, check operation of blowdown controllers. Calibrate as necessary 				
рН (<i>WT-3516</i>)	8.3 - 8.8	 Increase feed of the <i>WT-3516</i> if pH is low. Decrease feed if pH is high. Wait for two days of below 8.0 readings to increase feed of the <i>WT-3516</i> 				

AILE advocates fo	BRAFT	Di Diesday, August 23, 2016, 8:55 AM CDT						
Ioseph Campione Inc. Ieadquarters 2201 W. South Branch Blvd, Oak Creek WI 53154 414) 761-8944			Recorded By: Joe Russell (414) 425-3339 joe@watertechusa.com On-site: 6:00 PM to 6:00 PM CDT					
	_	P	ower Plan	t - Boilers	at Sular On			
Test		11 Softener	#2 Softener	Feedwater	Col	Johnston	New Col	Condensate
onductivity, mmho	inits	350 max	350 max	500 max	3500+4200	3500 - 4200	3500 + 4200	50 max
onductivity, Controller, mmohs	inits					3500 - 4200	3500 + 4200	
otal Hardness, ppm	inits	0.5 max	0.5 max	1 max				0.2 max
Alkalinity, ppm	.imits			20 max	200 - 700	200 - 700	200 • 700	
Alkalinity	inits			150 max	500 - 1000	400 - 1000	400 - 1000	
Hydroxide OH Alkalinity, ppm	inits				150 min	150 min	150 min	
ulfite, ppm	inits		5 D		30,70	30.70	30.70	
P-3060M	inits				06-12	06-12	06:12	
н ,	inits				4.4 ° 1.2	M.97.1.4	W.W.* 1.4	74.0

BOILER LOG SHEET

 \bigcirc

KEY TESTING PARAMETERS & CORRECTIVE ACTIONS

• TOWERS

- AUTOMATED SYSTEM DRIVEN
 - CONDUCTIVITY & TEMPERATURE
 - ORP
 - pH
 - WATER METER READINGS
 - CHEMICAL TANK LEVELS
- CHEMICAL DRIVEN
 - ORGANOPHOSPHONATES OR OP, PTSA
 - FREE CHLORINE
 - HARDNESS
 - M ALKALINITY

TOWER CONTROL CHART

Kange	Corrective Actions
20-80 ppm	If hardness if present, check the softeners.Regenerate softener on line if necessary.
2-1.0 ppm	 If levels are out of range check to see that the pump is primed and pumping. Check conductivity levels. High or low conductivity will cause high or low free chlorine levels.
2,800-3,000	 If conductivity is high, check the operation of the blowdown solenoid. If conductivity is low, check for uncontrolled losses or overflow of the sump. Verify the controller is reading properly. Calibrate or replace the sensor if needed.
50-200 ppb	 If levels are out of range check to see that the pump is primed and pumping. Check conductivity levels. High or low conductivity will cause high or low molybdenum levels. Check to see that the makeup water meter
	2-1.0 ppm ,800-3,000
Service Report

Tuesday, August 23, 2016 8:59 AM CDT

Joseph Campione Inc. Headquarters 2201 W. South Branch Blvd, Oak Creek WI 53154 (414) 761-8944

advocates for innovative water management

Recorded By: Joe Russell (414) 425-3339 joe@watertechusa.com On-site: 6:00 PM to 6:00 PM CDT

Driver Con Die to Con Die COT

		Power Plant - E	vap Condensers	
Test		Cooling Tower	Tower Make Up	
Conductivity, mmho	Livita	900 - 1000	1600 max	
Conductivity, Controller, mmohs	Limits	900 - 1000		
fotal Hardness, ppm	Limits	420 - 560	120 max	
Calcium Hardness, ppm	Linits	270 - 360	100 max	
Alkalinity, ppm	Limits	80 max	50 max	
fotal M Alkalinity, ppm	Linita	300 - 400	400 max	
Free Chlorine, ppm	Linits	0.5-2		
Organo Phosphonate, ppm	Livita	5.6-7	5 max	
Total Iron, ppm	Linits	1 mix		
ree ATP	Linits	1000 max		
fotal ATP	Limits	1000 máx		
H	Limits	8.5 - 9	9.5 max	
Hardness Cycles (Calculated)	Limits	4 max		
Calcium Cycles (calculated)	Linits	3.25+4		
Conductivity Cycles (Calculated)	Linita	328-4		

DRAFT

COOLING TOWER LOG SHEET

TAKING OWNERSHIP OF YOUR BOILER SYSTEM

WATER TESTING

TEST PROCEDURE GUIDELINES

	Total	Calcium	P	M	TDS,	Organo		Total		Total
SAMPLE	Hardness	Hardness	Alk.	Alk.	mmho	Phos	Sulfite	Polymer	pН	Iron
RAW WATER	X	X	X	X	X					
SOFT WATER	X				X					
RO PERMEATE	X				X				X	
FEEDWATER	X		X	X	X				X	X
CONDENSATE	X				X				X	X
BOILER WATER							44.4			
			X	X	X		X	X		
COOLING										
TOWER	X	X	X	X	X	X				

BASIC BOILER SYSTEM

- A PROCESS FOR SEPARATING SUSPENDED AND COLLOIDAL IMPURITIES FROM WATER
 - PASSAGE THROUGH A BED OF GRANULAR MEDIA
 - PASSAGE THROUGH SPIRAL WOUND CARTRIDGE OR BAG.

BAG / CARTRIDGE FILTERS

ADVANTAGES - low capital cost, simple operation

DISADVANTAGES – high operating cost, labor intensive

ALL CARTRIDGE FILTERS ARE NOT THE SAME!!!

BUBBLE POINT TESTING INDICATES ALL FILTERS ARE NOT THE SAME......

MEDIA FILTERS

- ADVANTAGES
 - FINE FILTRATION
 - 15 MICRONS
 - AUTOMATIC OPERATION
 - MINIMAL LABOR
 - LARGE SURFACE AREA

• DISADVANTAGES

- MODERATE CAP. COST
- HIGH BACKWASH VOL.
- GREAT "BUG" TRAP / MEDIA

MEDIA FILTERS

Fouled Media

Rebuilt Lower Distributor

DISC FILTERS

- DISC FILTER IS ALTERNATE TO MEDIA FILTER
- USES LESS WATER TO BACKWASH.
- FILTERS RANGE DOWN TO 25 MICRON.
- IDEALLY SUITED FOR COOLING TOWERS.

KEY FILTER TAKEAWAYS

- MAKE SURE NOT TO EXCEED MAXIMUM PRESSURE DROP OF 15 PSIG BEFORE
 CHANGING OUT ANY TYPE OF CARTRIDGE BAG FILTER
 - TRACK INLET AND OUTLET PRESSURES
- TRACK PRESSURE DIFFERENTIALS ACROSS MEDIA FILTERS TO ENSURE THAT THEY ARE BACKWASHING PROPERLY.
- MEDIA FILTERS MAY NEED TO BE DISINFECTED ON A ANNUAL OR SEMI ANNUAL
 BASIS TO REMOVE MICROBIOLGICAL FOULING.
 - USE FRESH WATER FOR BACKWASH FILTERS INSTEAD OF PROCESS OR TOWER WATER.
- DISC FILTERS ARE A GOOD ALTERNATIVE TO MEDIA FILTERS AS THEY USE LESS
 WATER TO BACKWASH

ASME GUIDELINES

SUGGESTED WATER CHEMISTRY LIMITS INDUSTRIAL FIRETUBE, HIGH DUTY, PRIMARY FUEL FIRED

Makeup water percentage: Up to 100% of feedwater

Conditions: No superheater, turbine drives, or process restriction on steam purity

Steam purity (7): 1.0 ppm (mg/l) TDS maximum

TABLE 3

Drum Operating Pressure	0-300 psig 0-2.07 MPz
Feedwater (3)	
Dissolved oxygen ppm (mg/l) O ₂ — measured before chemical oxygen scavenger addition (1) (2)	<0.007
Total iron ppm (mg/l) Fe	<0.1
Total copper ppm (mg/l) Cu	< 0.05
Total hardness ppm (mg/l)*	<1.0
pH @ 25°C	8.3-10.5
Nonvolatile TOC ppm (mg/l) C (6)	< 10
Oily matter ppm (mg/l)	<1
Boiler Water	
Silica ppm (mg/l) SiO ₂	<150
Total alkalinity ppm (mg/l)*	<700(5)
Free OH alkalinity ppm (mg/l)* (4)	NS
Specific conductance µmhos/cm (µs/cm) @ 25°C without neutralization	< 7000(5)

*as CaCO₃

NS = not specified

NOTES TO TABLE 3

- (1) Values in the table assume existence of a deaerator.
- (2) Chemical deaeration should be provided in all cases, especially if mechanical deaeration is nonexistent or inefficient.
- (3) Firetube boilers of conservative design, with internal chelant, polymer, and/or antifoam treatment can often tolerate higher levels of feedwater impurities than those in the table [≤0.5 ppm (mg/l) Fe, ≤0.2 ppm (mg/l) Cu, ≤10 ppm (mg/l) total hardness] and still achieve adequate deposition control and steam purity. Removal of these impurities by external pretreatment is always a more positive solution. Alternatives must be evaluated as to practicality and economics in each individual case.
- (4) Minimum and maximum levels of hydroxide alkalinity must be individually specified by a qualified water treatment consultant with regard to silica solubility and other components of internal treatment. See Section 6.6 of this document.
- (5) Alkalinity and conductance guidelines are consistent with steam purity target. Practical limits above or below tabulated values should be individually established for each case by careful steam purity measurements.
- (6) Nonvolatile TOC is that organic carbon not intentionally added as part of the water treatment program. See Section 6.4 of this document.
- (7) Target value represents steam purity that should be achievable if other tabulated water quality values are maintained. The target is not intended to be nor should it be construed to represent a boiler performance guarantee.

PRETREATMENT SYSTEM

WATER SOFTENER COMPONENTS

8 MEDIA BED 9 UNDERDRAIN STRAINERS 10 BACKWASH OUTLET VALVE 11 BACKWASH INLET VALVE

WHAT GOES ON INSIDE A WATER SOFTENER

Ready to Start

Operation

3.2 CHEMISTRY OF SODIUM ZEOLITE SOFTENING

The softening process may be illustrated by the following reactions.

$Ca(HCO_3)_2 +$	2N a Z	CaZ ₂ +	2 NaHCO3
Calcium	Sodium	Calcium	Sodium
Bicarbonate	Zeolite	Zeolite	Bicarbonate
MgSO ₄ +	2N a Z	MgZ ₂ +	Na2SO4
Magnesium	Sodium	Magnesium	Sodium
Sulfate	Zeolite	Zeolite	Sulfate

The letter Z represents the zeolite material.

LEGEND: 🖤 Calcium ions

Magnesium ions • Sodium ions

SOFTENING PROCESS takes place on the surface of the ion exchange medium in the unit, shown here as large shaded pellets. The function of this medium is to pull "hard" calcium and magnesium ions out of the water and replace them with "soft" sodium ions. In this schematic drawing, the pellets are fully charged with exchangeable sodium ions, indicated by small black circles.

Exhaustion

HARD WATER enters the softener at the top of the column. It contains numerous calcium and magnesium ions, symbolized by triangles and squares. As the water flows through the unit, these ions become attached to the surface of the ion exchange medium which in turn releases its sodium ions. As the water emerges from the bottom of the column, it is virtually free of "hard" ions.

Regeneration

TO RESUME ITS EFFECTIVENESS, the ion exchange medium must be stripped of its calcium and magnesium ions and provided with a new supply of sodium ions. This is done by running a salt solution, rich in sodium ions, through the unit. The sodium ions force

The regeneration process is indicated by the following reaction:

Sodium Chloride (Salt Brin	ie)	Calcium & Magnesium Zeolites	Sodium Zeolite		Calcium & Magnesium Chlorides
2 NaCl	+	MgZ2	2NaZ	+	MgCl ₂
2 NaCl	+	CaZ ₂	2NaZ	+	CaCl ₂

AFTER A PERIOD of operation, the ion exchange medium becomes "saturated" with "hard" calcium and magnesium ions, and its supply of sodium ions becomes virtually exhausted. When this occurs, no further softening can take place. As a result, hard

HOW A WATER SOFTENER WORKS

0

HOW DO YOU KNOW THE SOFTENER IS WORKING??

- PERFORM A TOTAL HARDNESS TEST ON THE WATER.
- SOFT WATER USED FOR BOILER MAKE UP SHOULD HAVE <0.5 PPM OF TOTAL HARDESS. THIS WILL VARY DEPENDING UPON BOILER PRESSURE. AS PRESSURE GOES UP ACCEPTABLE HARDNESS LEVELS GO DOWN.
- SOFT WATER USED FOR COOLING TOWER MAKE UP SHOULD BE LESS THAN 50 PPM AS A RULE OF THUMB. THIS WILL GO DOWN AS THE CYCLES OF CONCENTRATION IN THE TOWER GO UP.

Tech Tips

5000 South 110th Street

Greatfield, Wisconsis 53228 P. 414.425.3339 F. 414.425.3343

E INDEWATERTECHARLOW

 Be sure there is adequate lighting during testing Rinse test vial 3 times with solution to be tested. Hold reagent bottles vertically for best results. Make sure you have an accurate sample.

REV SIDE

TROUBLESHOOTING

- SHORT RUNS
 - CHANGE IN RAW WATER HARDNESS
 - POOR REGENERATION
 - RESIN FOULING
 - LOSS OF RESIN

- HIGH HARDNESS
 - RAW WATER BYPASSING UNIT
 - **RESIN FOULING**
 - INCREASED RAW HARDNESS IN SUPPLY WATER
- HIGH PRESSURE DROP
 - BED FOULING
 - POOR BACKWASH
 - PLUGGED UNDER DRAIN
 - DETERIORATING RESIN

BRINE ELUTION STUDIES

- PROBLEMS IN ZEOLITE SOFTENER SYSTEMS ARE OFTEN DUE TO POOR REGENERATION
 PRACTICES.
- BRINE ELUTION STUDY IS OFTEN USED TO TROUBLESHOOT THIS PROCESS.
 - PLOTS THE CONCENTRATION OF BRINE FROM A ZEOLITE SOFTENER DURING REGENERATION USING A BRINE SALOMETER AND GRADUATED CYLINDER

DESIRED CONCENTRATION OF BRINE IS 8% IN CONTACT WITH THE RESIN FOR 30 MINUTES (30 DEGREES ON SALOMETER).

REVERSE OSMOSIS

- MEMBRANE -BASED SEPARATION PROCESS
- INVOLVES THE SEPARATION OF DISSOLVED SOLIDS FROM THE FEEDWATER BY MEANS OF A SEMI-PERMEABLE MEMBRANE
 - MEMBRANES ALLOW WATER TO PASS THROUGH (PERMEATE) READILY, BUT ARE FAIRLY IMPERMEABLE TO OTHER CONSTITUENTS IN THE FEED STREAM.

REVERSE OSMOSIS

- ORIGINALLY DEVELOPED AS AN ALTERNATIVE TO DISTILLATION OF SEAWATER.
- PRODUCES A STEAM OF HIGH PURITY WATER AND CONCENTRATED WATER.

CHEMICAL TREATMENT

- RO FEEDWATER MUST BE CAREFULLY PREPARED TO MINIMIZE SUSPENDED SOLIDS, SCALING IONS, FREE HALOGEN RESIDUALS AND MICROBIOLOGICAL CONTAMINATION.
- FEEDWATER SHOULD THEN BE CHEMICALLY TREATED TO PREVENT MINERAL SCALING, PLUGGING AND MICROBIOLOGICAL DEGRADATION OF THE MEMBRANES.
- CONCENTRATE CAN BE TESTED FOR AMOUNT OF RO ANTISCALANT PRESENT TO PREVENT OVERFEED OR UNDERFEED OF PRODUCT.

MECHANICAL/CHEMICAL TREATMENT

- SOLIDS
 - MULTIMEDIA FILTRATION
- IRON
 - OXIDATION/FILTRATION
- MICROORGANISMS
 - BIOCIDES
 - BE CAREFUL WITH THE USE OF
 OXIDIZING BIOCIDES!

- SCALANTS(HARDNESS, ETC.)
 - SOFTENING
 - CHEMICAL ANTISCALANTS
- FREE CHLORINE (TFC MEMBRANES)
 - 0 PPM
 - USE BISULFITE

MONITORING AND MAINTENANCE

- ENSURE THAT THE SYSTEM IS OPERATING PROPERLY.
 - DETERMINE IF GRADUAL FOULING, SCALING OR MEMBRANE DEGRADATION IS OCCURRING BY OBSERVING SYSTEM PERFORMANCE OVER TIME.

Test	Boiler R.O. Train A	Boiler R.O. Train B	
B.O. Permeate Conductivity	14.2	10.83	
mmhos C2	10 max	10 max	100
	46	40	100 -
R.O. Feedwater Pressure, psi, P1	35 - 80	35 - 80	
	38	26	
LO. Filter Outlet Pressure, psi, P2	30 - 80	30 - 80	<u>.</u> 95 -
		14	-
R.O. Filter Pressure Drop, psi	15 max	15 max	- E /
	190	203	5
R.O. Pump Pressure, psi, P3	165 - 230	165 - 230	8 90
Stocker and contractive stockers and a state	127	152	Ē
R.O. Reject Pressure, psi, P4	105 - 170	105 - 170	e
10000 000 000 00 00	63	51	8
R.O. Pressure Drop, psi	60 max	60 max	85 -
Contract of the rate of the second	126	129	Pe
R.O. Feedwater Flow, gpm, FD	120 - 133	120 - 133	ö
	96	96	2 80 -
R.O. Permeate Flow, gpm, F1	90 - 100	90 - 100	1000 MAC
R.O. Reject Flow, gpm, F2	30	33	
	30 - 35	30 - 35	
Elecon 260, ppm	15.5	19.0	75 -
, recent west ppm	10 - 15	10 - 15	
R.O. % Recovery	76.2	74.4	
Rigi to Recovery	70 - 80	70 - 80	

MONITORING AND MAINTENANCE

Table 2-23: RO Performance Data Monitoring Form

Parameter	RO Inlet	RO Interstage	RO Concentrate	RO Permeate	Other
Pressure	Х	Х	Х	Х	Across each prefilter
Flow rate	Х	Х	х	Х	
Conductivity	Х	Х	х	Х	
Temperature	Х		х		
PH	Х		х		
SDI	Х				Inlet and outlet to each multimedia filter
Chlorine, free	Х		х		
Turbidity	Х				
LSI			х		
MB plates (one/week)	х		х	х	Before/after each piece of upstream equipment
					<u>k</u>

DEAERATION

- OXYGEN IS A NATURAL COMPONENT OF VIRTUALLY ALL WATER SUPPLIES.
- AT FEEDWATER AND BOILER TEMPERATURES, EVEN SMALL AMOUNT OF OXYGEN GREATLY ACCELERATE CORROSION.
- CORROSION WILL TYPICALLY BE OBSERVED IN A FEW
 SPECIFIC LOCATIONS.
 - ECONOMIZER DRAMATIC INCREASE IN TEMPERATURE
 - STEAM DRUM AT STEAM/DRUM INTERFACE
 - CONDENSATE SYSTEM

- PURPOSE
 - PRIMARY PURPOSE IS TO REMOVE OXYGEN AND OTHER DISSOLVED GASSES FROM THE FEEDWATER.
 - PREHEAT THE FEEDWATER TO PREVENT THERMAL SHOCK ON THE BOILER
- DISSOLVED GASSES THAT MAY BE REMOVED:
 - OXYGEN
 - CARBON DIOXIDE
 - AMMONIA
 - HYDROGEN SULFIDE

SPRAY/TRAY DEAERATOR

- TWO LAWS THAT GOVERN OPERATION:
 - SOLUBILITY OF GASSES IN LIQUIDS DECREASES WITH AN INCREASE IN TEMPERATURE. THIS ACTS TO RELEASE ALL DISSOLVED GASSES TO THE SPACE ABOVE THE LIQUID(HENRY'S LAW).
 - THE CONCENTRATION OF A DISSOLVED GAS IN SOLUTION IS DIRECTLY PROPORTIONAL TO THE PARTIAL PRESSURE OF THAT GAS IN THE FREE SPACE ABOVE THE LIQUID (DALTON'S LAW OF PARTIAL PRESSURES)

Solubility of Oxygen in Water

SPRAY TYPE DEAERATOR OPERATION

0

CHEMICAL DEAERATION

- EFFLUENT FROM A PROPERLY OPERATING DEAERATOR CONTAINS NO MORE THAN 7 PPB OXYGEN.
- LAST TRACES OF OXYGEN MUST BE CHEMICALLY SCAVENGED FROM THE FEEDWATER.
- TWO TYPES OF SCAVENGERS
 - INORGANIC SULFITES
 - ORGANIC DEHA, ERYTHORBATE, ETC.

- WATERTECH 3425
 - CATALYZED SODIUM SULFITE
- 2Na₂SO₃ + O₂ (SODIUM SULFITE) (OXYGEN)

(SODIUM SULFATE)

2Na₂SO₄

• THE CATALYST, LOW CONCENTRATIONS OF COBALT, SUBSTANTIALLY INCREASE THE REACTION RATE WITH THE OXYGEN.

DEAERATOR TROUBLESHOOTING

 DEAERATOR PERFORMANCE IS MONITORED WITH A DISSOLVED OXYGEN ANALYZER AND CHEMETRICS TESTS.

- IF EFFLUENT LEVEL OF OXYGEN IS HIGH
 - CHECK PRESSURE AND TEMPERATURE FOR INSUFFICIENT STEAM FLOW.
 - CHECK VENT VALVE SHOULD HAVE 18" PLUME
 - POOR SPRAY PATTERN CHECK SPRAY SYSTEM
 - BROKEN SCRUBBER OR TRAYS INSPECT

BASIC BOILER SYSTEM

THE BOILER SYSTEM.....WHAT TO KNOW

- FEEDWATER HARDNESS TEST IS THE MOST CRITICAL TEST TO RUN AND KEEP IN RANGE.
- CONDUCTIVITY CONTROL IS CRITICAL TO PROPER WATER CHEMISTRY.
 - USE AUTOMATION TO ACCOMPLISH THIS
- MAINTAIN PROPER OXYGEN SCAVENGER LEVELS
 - CHECK DEAERATOR, CHEMICAL FEED PUMP, TANK LEVELS IF READINGS ARE LOW
- MAINTAIN PROPER LEVELS OF INTERNAL TREATMENT/DISPERSANT
 - ADJUST CHEMICAL FEED PUMP AS NEEDED
- TRACK CONDENSATE AND FEEDWATER TOTAL IRON LEVELS TO MONITOR FOR CORROSION BYPRODUCT CONCENTRATION.
- TRACK CONDENSATE PH TO ENSURE PROPER FEED OF STEAM AND CONDENSATE TREATMENT.

BASIC COOLING TOWER SYSTEM

BASIC WATER TREATMENT COMPONENTS

- MAKE UP AND BLOWDOWN WATER METERS
- BLOWDOWN VALVE
- CONDUCTIVITY, PH, ORP CONTROL
- INHIBITOR PUMP
- BIOCIDE PUMPS
- OPTIONAL
 - TANKS, LEVEL SENSORS FLOW METERS

THE COOLING SYSTEM WHAT TO KNOW

- CONDUCIVITY CONTROL IS CRITICAL TO PROPER WATER CHEMISTRY
 - USE AUTOMATION TO ACCOMPLISH THIS
 - CHECK CALIBRATION WITH HAND HELD CONDUCTIVITY METER
- MAINTAIN PROPER SCALE AND CORROSION INHIBITOR LEVELS
 - ENVIRODOSE AUTOMATION, OP TESTING AND OTHERS.
- ENSURE BIOCIDES ARE BEING FED AS PRESCRIBED
 - TRACK ORP FOR OXIDIZING BIOCIDE.
 - MONITOR TANK LEVELS, PUMP FLOW OF NON-OXIDIZING BIOCIDES.
- IF PH CONTROL IS IN USE, AUTOMATED CONTROL OF ACID PUMP WITH PH SENSOR IS A MUST!
 - CHECK CALIBRATION WITH HAND HELD PH METER.
 - RUN TOTAL ALKALINITY TEST AS A BACK UP TEST.
- INSTALL WATER METERS TO TRACK MAKE UP AND BLOWDOWN GALLONS

WATER MANAGEMENT AUTOMATION

80

WHAT CAN BE AUTOMATED/TRENDED BOILERS

CONDUCTIVITY CONTROL

• CHEMICAL FLOW

PRESSURE AND TEMPERATURE

HARDNESS ANALYZER

• TANK LEVELS

- CONDENSATE pH
- CHEMICAL FEED AND RESIDUALS
- STEAM AND FEEDWATER FLOW

WHAT CAN BE AUTOMATED/TRENDED COOLING SYSTEMS

- CONDUCTIVITY CONTROL
- PH
- ORP(OXIDIZING BIOCIDE)
- CI2, CIO2 and other sensors
- TANK LEVELS

- PTSA(CORROSION INHIBITOR)
- MAKE UP AND BLOWDOWN
 GALLONS

DATA MANAGEMENT -BLUEVUE

Tower Bleed - Effluent Flow MarBewer Makeup - Makeup Flow McOntidoor Temperature - Outdoor Temperature

Conductivity vs ORP vs pH

Conductivity - Conductivit@RP - ORP pH - pH

CORRECTIVE ACTIONS

JEFF FREITAG

ATERTEC

- IDENTIFY PARAMETERS OUT OF RANGE AND THE
 POTENTIAL CAUSE
- CHEMICAL VS MECHANICAL-BASED
 CORRECTIONS
- CORRECTIVE ACTION FOLLOWUP

CORRECTIVE ACTIONS

 SO YOU KNOW WHAT TO SAMPLE, WHERE TO GRAB THE SAMPLE, HOW TO MAKE SURE IT'S A GOOD SAMPLE, HOW TO RUN THE PROPER TEST, AND WHERE TO LOG THE READING...

SO WHAT?

 LETS WALK THROUGH A COUPLE REAL LIFE EXAMPLES TO DISCUSS POSSIBLE CAUSE AND CORRECTIVE ACTION

•RE-SAMPLE

•RE-RINSE

•RE-TEST!

SOFTENER – CORRECTIVE ACTIONS

- MOST COMMON PROBLEMS WITH WATER SOFTENERS:
 - NO SALT
 - IMPROPER PROGRAMMING
 - IMPROPER SIZING
 - BAD SEALS OR INTERNALS

Softener

• High Hardness

- Re-run sample (flush)
- Test right after online unit
- Check status of unit online
- Check brine tank
- Switch softeners / put into regen

T eService	Home Product	t List View Al	arms Global /	Attachments I Company: V	Favorites Admin	Help Center Logout ca, Inc. Version: 2.55
Test	Deaerator	Softener #1	Main Condensate	ASC Condensate	R/O	· · · · · · · · · · · · · · · · · · ·
Conductivity, mmho	24 100 max	317 275 - 310	12 50 max	10 50 max	12 15 max	
Total Hardness, ppm	0.3 1 max	5 0.5 max	0 5 max	0 0.5 max	0.2 0.5 max	
рН	9.0 8.3 - 9.5		8.66 8.3 - 8.8	8.54 8.3 - 8.8		
P Alkalinity, ppm	8 4 - 30					
M Alkalinity	20 10 - 100					
Temperature	230 220 - 230					
Pressure (psi)	7 4 - 7					
Total Iron, ppm	0 0.05 max		0 0.05 max	0.1 0.05 max		

REVERSE OSMOSIS – CORRECTIVE ACTIONS

• MOST COMMON PROBLEMS WITH WATER RO'S:

- HARDNESS COMING FROM SOFTENER
- CHEMICAL FEED TO THE RO
- PRE-FILTERS PLUGGING
- BAD SEALS
- POOR PRESSURE FROM PUMP
- CHORINE BREAKTHROUGH
- DUE FOR CLEANING

REVERSE OSMOSIS – CORRECTIVE ACTIONS

- SCENARIO:
 - HARDNESS OR CONDUCTIVITY ARE HIGH:
 - IF EITHER ARE HIGH, CHECK THE QUALITY OF THE INFLUENT WATER FIRST
 - CHECK ALL GAUGES
 - CHECK WATER QUALITY ON OUTLET OF EACH MEMBRANE

DEAERATOR – CORRECTIVE ACTIONS

- MOST COMMON PROBLEMS:
 - TEMP/PRESSURE NOT CORRELATING
 - CHEMISTRIES OUT OF RANGE
 - CONTAMINATION

DEAERATOR – CORRECTIVE ACTIONS

• SCENARIO:

- TEMPERATURE IS LOW
 - CHECK PRESSURE
 - CHECK ACCURACY OF GAUGES
 - CHECK VENT
 - CHECK STEAM HEATING SYSTEM

ATERTECH advocates for innovative water management

Waukesha Memorial Hospital Waukesha Memorial Hospital 725 American Ave, Waukesha WI 53188 (262) 928-2235 ement Friday, January 16, 2015 3:36 PM CST Report Number: 227340

Recorded By: Jeff Freitag (414) 425-3339 jeff@watertechusa.com On-site: 12:30 PM to 2:30 PM CST

Service Report

Power Plant - Reiler Room					
Test	i i	Boiler #1	Boiler #2	Deserator	Condensate
Conductivity, mmho	Limits	2031 2500 - 3000	940 2500 - 3000	6 100 max	1.7 80 max
Neutralized Cond. mmhos	Limits	1034 1000 - 1400	463 1000 - 1400	2010/01/02	
Alkalinity, ppm	Limits	376 300 - 600	180 300 - 600	2 4 - 40	
Total M Alkalinity, ppm	Limits	396 350 - 650	192 350 - 650	4 75 max	
Hydroxide OH Alkalinity, ppm	Limits	356.0 150 - 400	168.0 150 - 400		
Sulfite, ppm	Limits	30 30 - 50	0 30 - 50		
Total Polymer, ppm	Limits	1.3 0.9 - 1.4	0.44		
Total Hardness, ppm	Limits			0	0 0.5 max
эH	Limits		(6.2 8.3 - 9.5	5.7 83-88
Total Iron, ppm	Limits				0.01 0.05 max
Temperature	Limits			212 212 - 230	
Pressure (psi)	Limits	78 65 - 90	77 65 - 90	2 5 - 7	
Stack Temp - F		350	400		

• SCENARIO:

• LOW PH

- CHECK MAKEUP WATER QUALITY
- CHECK CONDENSATE RETURN
 WATER QUALITY
- CHECK CHEMICAL FEED LEVELS

BOILER – CORRECTIVE ACTIONS

• MOST COMMON PROBLEMS WITH WATER BOILERS:

- CONDUCTIVITY OUT OF RANGE
- CHEMISTRIES OUT OF RANGE
- CLOUDY / COLORED WATER
- BOILER WATER CARRYOVER

Boiler

- B1 Low Conductivity & Alkalinity & Sulfite
- High Condensate pH
- B1 Low Conductivity
- Re-run sample (flush)
- Check for loss of water or improperly operating blowdown system
- High pH
- Most likely steam line treatment overfeed

	User: Jeff Fr	eitag Group:	Sales Manager	Company: V	Vatertech of Ar	nerica, Inc. Ver	sion: 2.55
Test	Boiler #1	Boiler #3	Deaerator	Condensate			
Conductivity, mmho	1010 2500 - 3000	2408 2500 - 3000	26 100 max	22 80 max			
P Alkalinity, ppm	120 300 - 600	428 800 - 600					
Total M Alkalinity, ppm	160 350 - 650	492 350 - 650					
Hydroxide OH Alkalinity, ppm	80.0 150 - 400	364.0 150 - 400					
Sulfite, ppm	7 30 - 50	33 30 - 50					
Total Polymer, ppm	0.945 0.9 - 1.4	1.325 1.4 - 1.6					
Total Hardness, ppm			0 1 max	0 0.5 max			
pH				9.14			

BOILER BLOWDOWN VALVE

Boiler

- B1 High Sulfite
- B2 Low Conductivity
- B1 High Sulfite
- Since conductivity is low, this is likely an overfeed.
- Compare to 2nd boiler
- Low Conductivity
- Check for loss of water or improperly operating blowdown system
- Check lead/lag operation

						\smile	
TeService	Home Product	t List View Al	arms Global /	Attachments	Favorites Admin	Help Center	Logout
Test	Boiler #1	Boiler #2	Deaerator	Condensate			. 2.00
Conductivity, mmho	1970 2500 - 3000	1410 2500 - 3000	34.7 100 max	23 80 max			
P Alkalinity, ppm	320 300 - 600	200 300 - 600					
Total M Alkalinity, ppm	400 350 - 650	276 350 - 650					
Hydroxide OH Alkalinity, ppm	240.0 150 - 400	124.0 150 - 400			G	a	R
Sulfite, ppm	100 30 - 50	72 30 - 50					F
Total Polymer, ppm	1.772 0.9 - 1.4	0.955 0.9 - 1.4				ww	w.faccinefb
Total Hardness, ppm			0 1 max	0 0.5 max			
рН			8.4 8.3 - 9.5	8.7 8.3 - 8.8			

0

Boiler

- B1 High Polymer
- B2 Low Conductivity & Alkalinity
- B1 High Polymer
- Since conductivity is low, this is likely an overfeed.
- Compare to 2nd boiler
- Low Conductivity
- Either water loss or lag boiler taking on condensate

	t List View Alarm	s Global Attachment	s Favorites	Admin H	elp Center	out (WA
User: Jeff	Freitag Group: Sa	Power Plant ⇒ I	Boilers	of America, Ii	nc. Version: 2.55	
Test	Boiler 4	Boiler 6				
Conductivity, mmho	2566 1800 - 2800	687 1800 - 2800				
P Alkalinity, ppm	420 200 - 400	120 200 - 400				
M Alkalinity	540 300 - 500	160 300 - 500			2	
Hydroxide OH Alkalinity, ppm	300.0 150 - 400	80.0 150 - 400				
Sulfite, ppm	90 30 - 100	25 30 - 100				
Total Polymer, ppm	1.9 0.7 - 1	1 0.7 - 1			$\int D^{0}$	
Pressure (psi)	72 70 - 100	70 70 - 100		C	55	

WTH?

- Never hesitate to question everything!
- This was the sulfite chemical.

INTERPRETATION OF RESULTS – EXAMPLE 1

• SCENARIO:

- LOW ALKALINITY AND HIGH CONDUCTIVITY
- RO MAKEUP
- CORRECTION:
 - LOSS OF PRIME OR FEED OF ALKALINITY BOOSTER
 - DETRIMENTAL TO THE BOILER INTERNALS
 - ALWAYS MAINTAIN 250PPM MINIMUM OF OH ALKALINITY IN BOILER

INTERPRETATION OF RESULTS – EXAMPLE 2

- SCENARIO:
 - SULFITE RESIDUAL IS HIGH
 - CONDUCTIVITY IS IN RANGE
 - FEEDWATER TEMPERATURE IS HIGHER THAN NORMAL
- CORRECTION:
 - THE FEEDWATER TEMPERATURE IS RELATED TO THE SULFITE RESIDUAL
 - NO ACTION IF THE FEEDWATER TEMPERATURE WILL COME BACK DOWN
 - IF YOU TURN IT DOWN IT WILL BE LOW

STEAM & CONDENSATE – CORRECTIVE ACTIONS

MOST COMMON PROBLEMS WITH WATER CONDENSATE SYSTEMS:

- CONDUCTIVITY HIGH
- PH HIGH OR LOW
- TOTAL HARDNESS HIGH
- IRON DETECTED
- COLD CONDENSATE

STEAM & CONDENSATE – CORRECTIVE ACTIONS

• SCENARIO:

- SLIGHT ELEVATED HARDNESS:
 - CHECK INDIVIDUAL RETURN LINES
 - CHECK CONDUCTIVITY LEVELS
 - TRY TO FIND SPECIFIC SOURCE
 - MOST LIKELY BAD HEAT
 EXCHANGER

COOLING TOWER – CORRECTIVE ACTIONS

- MOST COMMON PROBLEMS WITH WATER COOLING TOWERS:
 - CONDUCTIVITY OUT OF RANGE
 - INHIBITOR OUT OF RANGE
 - MICROBIOLOGICAL ACTIVITY
 - SEDIMENT AND/OR ALGAE NOTICED IN TOWER
 - AUTOMATION ISSUES

Towers

- Low Molybdenum / Inhibitor
- Check conductivity level
- Check log book for trending data
- Check that pump is primed
- Check for chemical in the tank
- Turn up feed rate

			\smile
Home	Product List View Alarr	ns Global Attachments	Favorites
	Ρον	wer Plant ⇒ Towers	*
Test	Tower #2	Tower #3	
Conductivity, mmho	944 900 - 1000	1045 900 - 1000	
Molybdenum, ppm	1 1 - 1.5	0.4 1 - 1.5	
Total Hardness, ppm	408 430 - 575	460 400 - 575	
Free Chlorine, ppm	0.4 1 max	0.3 1 max	
Bacteria Dip Slide, cfuml	10.2 10.4 max	10.3 10.4 max	
	-	-	×

Towers

• FUBAR

- Check automation!
- Most likely flow switch is off or "open"

Test	Tower/chiller	Ľ
Conductivity, mmho	4200 3400 - 3600	0
Total Hardness, ppm	120 80 max	
Free Chlorine, ppm	0 1 max	
ORP, mV	150 400 - 500	
Organo Phosphonate, ppm	4.2 12.6 - 19.5	
Calcium Hardness, ppm	62 40 max	
M Alkalinity	1800 1400 max	
Bacteria Dip Slide, cfuml	10.6 10.5 max	0
Fungi mold Dip slide	0 10.2 max	
Molybdenum, ppm	0.1 0.4 - 0.8	

	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	A REAL PROPERTY AND A REAL	Dirit (o)			
	West Office Building - Tower and Closed					
Test		Cooling Tower				
Conductivity, mmho	Limits	1029 900 - 1000				
Total Hardness, ppm	Limits	516 390 - 475				
M Alkalinity	Limits	460 300 - 400				
Bacteria Dip Slide, cfuml	Limits	10.5 10.4 max				
Fungi mold Dip slide	Limits	0 10.2 max				

- High Bacteria
 - Check conductivity level
 - Check sediment build up in tower
 - Check that the biocide pumps are primed
 - Check for chemical in the tanks
 - Turn up feed rate
 - Test for proper biocide residuals
 - Retest bacterial levels in one week

Towers

- High conductivity
 - Check operation of bleed valve
 - Check flow to drain when bleed valve is open
 - Check conductivity sensor
 - Run graph on bleed meter vs. makeup meter

Direct Sensors	Current Reading	Set Point	Last 0 Hrs			
			AVG	MIN	MAX	Status
Conductivity S1)	1485.78 µS 80.18 °F	950	1540.87	1485.94	1564.66	High High Alarn
ORP(S2)	391.13 mV	N/A	389.10	386.05	391.13	Normal

ontroller De
lame:
ocation:
ate:
ontroller Ph#:
oftware Ver#:
lodel Number:
ontroller Serial
lumber:
ore Serial
lumber:

Outputs	Output Status			
WT-5745 (R1)	Off	L		
WT-5213 (R2)	Off,00:00:09	Ĩ,		
RC-416(R3)	Off			
Bleed Valve (R4)	On,00:39:53	J.		
Alarms(R8)	Off,00:00:09			

Alarm Status	
New Alarms: Conductivity (S1)High Alarm Conductivity (S1)High High Alarm Tower Makeup (DI_A)Total Alarm Limit	^
Old Alarms:	~

Р 🛓

N

0

Digital Inputs	Input Type	Status	Total	Rate
Tower Makeup(DI_A)	Contact Flow Meter	Total Alarm	32480.00 gal	N/A
Tower Bleed(DI_B)	Contact Flow Meter	Normal	500.00 gal	N/A
Flow Switch(DI_C)	Interlock	Closed	N/A	N/A

w

3

High Conductivity Corrective Action

- Valve would only open partially
- Actuator was bad. Ordered a new one

LOW OR NO CHEMICAL IN TANK

CLEAN SENSORS

0

STRAINERS

FLOW SWITCH

0

INTERPRETATION OF RESULTS – EXAMPLE 1

- AMMONIA SYSTEM
 - CONDUCTIVITY IS IN RANGE BUT PH IS VERY HIGH
 - USING WT-5230 AND THERE IS A PINK COLOR TO THE WATER
- TOWER SYSTEM
 - AMMONIA LEAK IN SYSTEM
 - AMMONIA HAS AN EXTREMELY HIGH PH WHEN INTRODUCED TO WATER AND WILL REACT WITH GLUTARALDEHYDE TO COLOR THE WATER PINK
 - CALL YOUR AMMONIA CONTRACTOR ASAP!!!

INTERPRETATION OF RESULTS – EXAMPLE 2

- TOWER SYSTEM
 - CONDUCTIVITY AND PH ARE IN RANGE BUT HARDNESS AND ALKALINITY ARE LOW
 - LOW SCALE INHIBITOR LEVEL
- TOWER SYSTEM
 - THE LOSS OF HARDNESS AND ALKALINITY INDICATE SCALE FORMATION
 - COMPARE CYCLES OF CONCENTRATION (COC) TO HARDNESS CYCLES BASED ON MAKEUP WATER
 - MAKE SURE INHIBITOR PUMP IS PRIMED AND PUMPING